with financial aid from the Netherlands Organization for Scientific Research (NWO).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1536). Services for accessing these data are described at the back of the journal.

References

Boer, J. L. de \& Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410. Böhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 1713-1745.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Sheldrick, G. M. (1996a). SHELXS96. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1996b). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spek, A. L. (1994). Am. Crystallogr. Assoc. Abstr. 22, 66.
Spek, A. L. (1997). HELENA. Program for Data Reduction. University of Utrecht, The Netherlands.
Timmerman, P., Boerrigter, H., Verboom, W. \& Reinhoudt, D. N. (1995). Recl. Trav. Chim. Pays-Bas, 114, 103-111.

Timmerman, P., Vreekamp, R. H., Hulst, R., Verboom, W., Reinhoudt, D. N., Rissanen, K., Udachin, K. A. \& Ripmeester, J. (1997). Chem. Eur. J. 3, 1823-1832.
Vreekamp, R. H., Hubert, M., van Duynhoven, J. P. M., Verboom, W. \& Reinhoudt, D. N. (1996). Angew. Chem. Int. Ed. Engl. 35, 1215-1218.

Acta Cryst. (1998). C54, 1025-1027

Methylphenylammonium Hydrogen 2,6-Pyridinedicarboxylate at 158 K

Seik Weng NG^{a} and Mark M. Turnbull ${ }^{b}$
${ }^{a}$ Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\text {b }}$ Clarkson School of Chemistry, Clark University, Worcester MA 01610, USA. E-mail: hlnswen@umcsd.um.edu.my

(Received 4 December 1997; accepted 26 January 1998)

Abstract

The hydrogen 2,6-pyridinedicarboxylate anions in methylphenylammonium hydrogen 2,6-pyridinedicarboxylate, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} . \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}^{-}$, are linked by a hydrogen bond $[\mathrm{O} \cdots \mathrm{O}=2.472(2) \AA]$ into a zigzag chain; the methylphenylammonium cations are linked to the chain by four $\mathrm{N} \cdots \mathrm{O} / \mathrm{N} \cdots \mathrm{N}$ hydrogen bonds.

Comment

In the crystal structure of 2,6-pyridinedicarboxylic acid monohydrate, the 2,6-pyridinedicarboxylic acid molecules are linked into a linear chain through an
intermolecular hydrogen bond involving the carboxy COOH group of one molecule and the carboxy COOH group of an adjacent molecule $[\mathrm{O} \cdots \mathrm{O}=2.584$ (7) \AA]. The doubly-bonded carbonyl O atom of the first group and the hydroxyl O atom of the second group are linked to the water molecule, these hydrogen bonds giving rise to a sheet structure (Takusagawa et al., 1973). In methylphenylammonium hydrogen 2,6 -pyridinedicarboxylate, (I), the hydrogen 2,6-pyridinedicarboxylate anion is similarly linked into a chain running parallel to the c axis by a hydrogen bond involving the carboxy COOH group of one anion and the negatively charged carboxyl COO^{-}group of a symmetry-related anion, but the hydrogen bond is much stronger [$\mathrm{O} \cdots \mathrm{O}=$ $2.472(2) \AA$]. The carbon-oxygen bonds in the carboxy $[\mathrm{C}-\mathrm{O}=1.310(3)$ and $\mathrm{C}=\mathrm{O}=1.216(3) \AA]$ and carboxyl $[\mathrm{C}-\mathrm{O}=1.283(3)$ and $\mathrm{C}=\mathrm{O}=1.242(3) \AA]$ groups can be differentiated into single and double bonds, with the difference in the pair of distances for the carboxy group being more marked. The ammonium cations surround the chain; one of the H atoms is linked to the pyridyl N atom and the singly-bonded O atom of the carboxyl group $[\mathrm{N} 2 \cdots \mathrm{~N} 1=3.074(3)$ and $\mathrm{N} 2 \cdots \mathrm{O} 3=$ 2.904 (3) A]; the other H atom is linked to the carboxy O atom as well as to the doubly-bonded carboxyl O atom of the adjacent anion [N2 $\cdots \mathrm{O} 1=2.809$ (3) and $\mathrm{N} 2 \cdots \mathrm{O} 4=2.784(3) \AA$. .

(I)

The hydrogen-bonding distance that links the anions into a polyanionic zigzag chain is similar to that [2.484 (3) \AA] found in the (dimethyldithiocarbamyl)-acetate-(dimethyldithiocarbamyl)acetic acid monoanion ($\mathrm{Ng}, 1997 b$), as well as to that $[2.448$ (3) \AA] found in the

Fig. 1. ORTEPII (Johnson, 1976) plot of (I) at the 50% probability level. H atoms are drawn as small circles of arbitrary radii.
trithiocarbodiglycolate-tricarbodiglycolic acid dianion ($\mathrm{Ng}, 1995$). These distances are, however, much shorter than the hydrogen bond $[2.710$ (3) \AA] that links the nonplanar hydrogen oxalate anion into a helical chain in the dicyclohexylammonium salt ($\mathrm{Ng}, 1994$). The hydrogen 2,6-pyridinedicarboxylate anion is flat, a conformation also adopted by the 2,6-pyridinedicarboxylate dianion in its dihydrated bis(dicyclohexylammonium) salt (Ng , 1997a).

Fig. 2. PLUTON (Spek, 1994) plot of the hydrogen-bonded zigzag chain.

Experimental

The compound was synthesized by neutralizing 2,6 -pyridinedicarboxylic acid with an equimolar quantity of N-methylaniline in ethanol. Crystals of the compound did not diffract well at room temperature, hence necessitating low-temperature measurements.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} . \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}^{-}$
$M_{r}=274.27$
Monoclinic
$P 2_{1} / c$
$a=11.834$ (2) \AA
$b=8.841$ (2) \AA
$c=12.889(2) \AA$
$\beta=93.41$ (2) ${ }^{\circ}$
$V=1346.1(4) \AA^{3}$
$Z=4$
$D_{x}=1.353 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
ω scan
Absorption correction: none
2843 measured reflections
2372 independent reflections
1167 reflections with
$I>2 \sigma(i)$
$R_{\text {int }}=0.052$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.071$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 21 reflections
$\theta=4.0-12.5^{\circ}$
$\mu=0.101 \mathrm{~mm}^{-1}$
$T=158$ (2) K
Triangular bloch
$0.45 \times 0.35 \times 0.21 \mathrm{~mm}$ Colorless
$\theta_{\text {max }}=24.99^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 10$
$l=0 \rightarrow 15$
3 standard reflections every 97 reflections intensity decay: none

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0229 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001
\end{gathered}
$$

$$
S=0.737
$$

2372 reflections
193 parameters
O - and N -bonded H atoms were located and refined; riding model for the C-bonded H atoms, with $U=1.5 U_{\text {eq }}(\mathrm{C})$
$\Delta \rho_{\text {max }}=0.171 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.252 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{Cl}$	$1.310(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.384(3)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.216(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.383(3)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.283(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.385(3)$
$\mathrm{O} 4-\mathrm{C} 7$	$1.242(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.513(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.347(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.372(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.353(3)$	$\mathrm{C} 8-\mathrm{Cl} 3$	$1.379(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.470(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.388(4)$
$\mathrm{N} 2-\mathrm{C} 14$	$1.494(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.382(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.508(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.377(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.384(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.388(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$117.1(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$121.1(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 44$	$112.4(2)$	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{O} 4$	$126.1(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$125.5(2)$	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 6$	$115.3(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$112.9(2)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 6$	$118.6(3)$
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 2$	$121.5(3)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13$	$121.1(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl}$	$116.2(2)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2$	$119.5(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.3(2)$	$\mathrm{C} 13-\mathrm{C} 8-\mathrm{N} 2$	$119.4(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.5(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$119.7(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.1(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$119.9(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.2(3)$	$\mathrm{C} 12-\mathrm{Cl1-C10}$	$119.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.7(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.7(3)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$122.5(2)$	$\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$118.9(3)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$116.4(2)$		

Data collection: XSCANS (Siemens, 1990). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC Sheldrick, 1990b). Software used to prepare material for publication: SHELXL93.

We thank Professor Ward T. Rotinson of the University of Canterbury, New Zealand, for the use of the diffractometer, and the National Science Council for R\&D, Malaysia (IRPA 09.02-03-0371), for supporting tnis work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1269). Services for accessing these data are described at the back of the journal.

References

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ng, S. W. (1994). Malays. J. Sci. 15B, 27-29.
Ng, S. W. (1995). Acta Crist. C51, 2150-2152.
Ng, S. W. (1997a). Acta Cryst. C53, 986-987.
Ng, S. W. (1997b). Acta Cryst. C53, 1111-1113.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick. G. M. (1990b). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1994). PLUTON. Molecular Graphics Program. University of Utrecht, The Netherlands.
Takusagawa, F., Hirotsu, K. \& Shimada, A. (1973). Bull. Chem. Soc. Jpn, 46, 2020-2027.

Acta Cryst. (1998). C54, 1027-1028

4-Benzoyl-6-(4-methoxybenzylidene)-3-phenyl-2-oxa-3-azabicyclo[3.3.0]oct-7-ene

Marek M. Kubicki, ${ }^{a}$ Olivier Blacque, ${ }^{a}$ Francis Djapa, ${ }^{b}$ Kabula Ciamala ${ }^{b}$ and Joël Vebrel ${ }^{b}$
${ }^{a}$ Laboratoire de Synthèse et d'Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, Faculté des Sciences, 6 boulevard Gabriel, 21000 Dijon, France, and ${ }^{b}$ Laboratoire de Chimie Organique, Université de Franche-Comté, 16 Route de Gray, La Bouloie, 25030 Besançon, France. E-mail: marek.kubicki@u-bourgogne.fr

(Received 20 November 1997; accepted 30 January 1998)

Abstract

The title compound, $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{3}$, consists of a fulvene-1,3-dipolar-nitrone adduct with a five-membered $\mathrm{C}_{3} \mathrm{NO}$ saturated heterocycle.

Comment

The 1,3-dipolarophilic reactivity of fulvenes towards some 1,3-dipoles has been studied for many years (Alder et al., 1961; Houk \& Luskus, 1970; Caramella et al., 1971) but, to the best of our knowledge, nitrones have never been used as 1,3-dipole targets. The structure of the title compound, (1), shows that the fulvene-1,3-dipolar-nitrone reaction proceeds through the usual pathway. Cycloaddition involves one of the two fulvenic

(1)
double bonds ($\mathrm{C} 2=\mathrm{C} 3$ and $\mathrm{C} 4=\mathrm{C} 5$). The second one, equal to 1.324 (3) \AA in (1), is not affected by cycloaddition. The central saturated cycle is puckered and exhibits a 'boat-like' geometry over the planar Cl $\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$ unit. The dihedral angles involving this unit with the $\mathrm{O} 1-\mathrm{N}-\mathrm{C} 1$ and $\mathrm{C} 2-\mathrm{C} 6$ planes are equal to 37.1 (2) and $58.7(2)^{\circ}$, respectively. The fulvene-
derived fragment in (1) remains almost planar, with the dihedral angle between the $\mathrm{C} 2-\mathrm{C} 6$ and $\mathrm{C} 8-\mathrm{C} 13$ planes equal to $6.6(1)^{\circ}$. A perspective view of the title molecule is shown in Fig. 1.

Fig. 1. View of the molecular structure of (1) showing 50% probability displacement ellipsoids.

Experimental

In the course of our studies on 1,3-dipolar cycloadditions, the reaction involving a fulvene and a nitrone has been carried out. A mixture of 3 mmol of $6-p$-anisylpentafulvene and 5 mmol of nitrone were refluxed for 15 h in THF. After evaporation of the solvent, the crude oil, containing formally at least eight regioand stereoisomers, was dissolved in etbanol and the major product, (1), was separated by thin-layer chromatography on silica gel (57% yield). Ciystals of (1) suitable for X-ray measurements were grown rom ethanol.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{3}$
$M_{r}=409.46$
Triclinic
$P \overline{1}$
$a=9.542(5) \AA$
$b=10.327$ (6) \AA
$c=11.857$ (9) \AA
$\alpha=114.41(5)^{\circ}$
$\beta=90.70(5)^{\circ}$
$\gamma=96.61(5)^{\circ}$
$V=1054.5(11) \AA^{3}$
$Z=2$
$D_{x}=1.290 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffrastometer

Mo $K \alpha$ radiation
$\therefore=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.74-18.07^{\circ}$
$\mu=0.084 \mathrm{~mm}^{-1}$
$T=296(1) \mathrm{K}$
Irregular
$0.25 \times 0.15 \times 0.15 \mathrm{~mm}$
Pale yellow

